
Comment on 'Painleve test and integrability of nonlinear Klein-Fock-Gordon equations'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 503

(http://iopscience.iop.org/0305-4470/20/2/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 20 (1987) 503-505. Printed in the UK 

COMMENT 

Comment on ‘Painleve test and integrability of non-linear 
Klein-Fock-Gordon equations’ 
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t CPTh, Ecole Polytechnique, 91 128 Palaiseau, France 
$ CNET-TIM, 92131 Issy-les-Moulineaux, France 

Received 12 March 1986 

Abstract. We show that the arguments of Doktorov and Sakovich against the validity of 
the Painlevt test are unfounded, being based on an incomplete singularity analysis. 

Doctorov and Sakovich (1985) is based on a misconception of the so-called ‘PainlevC 
analysis’. They consider part of the possible singular behaviour of the solution of an 
equation. Finding that some behaviour has the PainlevC property, they mistakenly 
jump to the conclusion that the equation passes the test. In fact, most of the equations 
they quote fail the test, because of a singular behaviour the authors ignored. In 
particular, equations (22), (25) and ‘(4) with a glance to (26) ’ fa i l  to pass the test in 
general, contrary to the authors’ assertion. 

Most papers on singularity analysis deal with differential equations polynomial in 
the dependent variable cp where the coefficient of the highest derivative term is a 
constant. Therefore singularities occur only when Q diverges. The crucial point is that 
for equations like (41, where the coefficient A ( p )  of the highest derivative term is not 
a constant, singularities occur not only when cp diverges, but also when A(cp) goes to 
zero, i.e. for cp going to zero in their case where A is a monomial in cp. Therefore one 
must check both that ‘pole-like’ singularities are just pure poles, but also that ‘zero-like’ 
points are regular zeros and not critical points. 

The authors’ claim that equation (25): 

+, = i, e2* + i2 e-* + i3 e-2* 

passes the PainlevC test is self-contradictory. Their own calculations (equation (24)) 
prove that if [, is not zero, no term proportional to e* is allowed. Change J, to -+ 
(and certainly any reasonable definition of the PainlevC property should be invariant 
under this change), which precisely corresponds to considering ‘zeros’ of cp = e* instead 
of ‘poles’. One similarly concludes that if i3 is not zero, i2 must vanish in order for 
the Painlev6 property to hold. For the same reason, (25) contradicts (22): 

J , ~ ~  = e* + s2 e-* + t3 e-2*. 

When il er* is present in (25) no term proportional to e* is allowed. Change J, to 
-$, take i3 to be zero, which now allows a non-zero i2. One recovers (22) with 
51 = -&, 5 3  = -l1, but where t2 must be zero! 
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As a result, the only equations of this form that pass the PainlevC test are the three 
known integrable equations: Liouville, sine-Gordon and Mikhailov-Dodd- Bullough. 
This has been proven by Clarkson et a1 (1986). 

As for equations (4)-(26), the mistake is quite obvious. The authors consider 
pole-like singularities of cp = 1 / $  and find them to be pure poles, as should be expected. 
Indeed, these are zeros of $ (satisfying (27)) which are manifestly regular points. 
What are interesting are the pole-like singularities of equation (27), i.e. zero-like 
singularities of equations (4)-(26). The condition for these singularities to be in fact 
regular zeros (i.e. pure poles of +) are highly non-trivial. Some of these equations 
(very special) may have the PainlevC property and will presumably be integrable. In 
general, however, this is not the case. Let us consider the simplest non-trivial equation 
of the type (4)-(26), namely 

4 X Y  = *3 ( 1 )  

which is well known not to be integrable. This is consistent with the fact that it does 
not pass the PainlevC test in the sense of Weiss-Kruskal (Weiss et a1 1983, Kruskal 
1980 private communication, Jimbo et a1 1982) as follows. 

Let us look for a pole-like expansion of the form, where g is a free function of y :  

m 

which is not identically satisfied but is an equation for g(y) .  In the sense of the 
Weiss-Kruskal conjecture this precisely means that equation ( 1 )  fails the test as is 
expected since it is known to be non-integrable. 

Incidentally, another objection of Doktorov and Sakovich to the Weiss algorithm 
(where w and E, depend on N variables when only two function of N -  1 variables 
are needed) has been taken care of long ago by the Kruskal modification of the Weiss 
algorithm. 

Even though some other points stressed by the authors, like the role of essential 
singularities, may be relevant, it remains that their paper is based on a severe misconcep- 
tion. The connection between integrability and the PainlevC property is not yet clearly 
established and some subtle and delicate problems remain. However, the reliability 
of the Painleve method will only be established (or challenged) through complete 
singularity analysis. 
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